Identification of brown fat and mechanisms for energy balance in the marsupial, Sminthopsis crassicaudata

Author:

Hope P. J.1,Pyle D.1,Daniels C. B.1,Chapman I.1,Horowitz M.1,Morley J. E.1,Trayhurn P.1,Kumaratilake J.1,Wittert G.1

Affiliation:

1. Department of Medicine, University of Adelaide, Australia.

Abstract

The presence of brown adipose tissue (BAT) in marsupials is controversial because attempts to identify mitochondrial uncoupling protein (UCP) have been unsuccessful. Sminthopsis crassicaudata is a small nocturnal marsupial with an interscapular pad of adipose tissue. Electron microscopy revealed this tissue to have characteristics typical of BAT. GDP binding and UCP detection by immunoblot confirmed BAT. Expression of UCP was increased by cold exposure. When animals were placed from 28 to 15 degrees C, body temperature (Tb) decreased by 1.7 degrees C within 30 min and a further 1.0 degree C by 90 min (P < 0.001) before stabilizing at these lower levels. When animals were returned to 28 degrees C, Tb increased within 30 min (P < 0.001) and returned to basal by 120 min. When animals were maintained at 15 degrees C with ad libitum food for 12 days, Tb (P < 0.05), tail width (P < 0.04), and O2 consumption (P < 0.01) all decreased. The respiratory quotient increased (P < 0.001), indicating a change from fat to carbohydrate utilization. Food intake was unchanged, and body weight increased on day 1 (P < 0.01) before returning to baseline on day 3, remaining stable thereafter. These data suggest that although BAT is present in the marsupial S. crassicaudata, it may not be necessary for thermogenesis, at least in the short term. S. crassicaudata utilizes a plasticity in Tb and a change in substrate utilization to maintain energy balance and body composition without the need for an increase in metabolic rate or food consumption and without the need for torpor.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3