Multifiber renal SNA recordings predict mean arterial blood pressure in unanesthetized rat

Author:

Burgess D. E.1,Hundley J. C.1,Li S. G.1,Randall D. C.1,Brown D. R.1

Affiliation:

1. Department of Chemistry and Physics, Asbury College, Wilmore40390-1198, USA.

Abstract

The goal of this analysis was to quantify the relationship between renal sympathetic nerve activity (SNA) and mean arterial blood pressure (MAP). We previously recorded renal SNA and MAP in conscious rats during a stressful behavioral stimulus and during a nonstressful stimulus. We then formulated a set of two linear, first-order differential equations that uses our SNA recordings after a time delay (the input) to predict fluctuations in MAP (the output). Our model has four parameters: 1) the cardiovascular time constant T that characterizes the frequency response function between the effector elements controlled by the sympathetic nerves and the cardiovascular system (1-5 s); 2) the effector time constant Te determined by the coupling between the sympathetic nervous system and the effectors (0.0-0.6 s); 3) the efferent time delay tau e between a change in SNA and a change in MAP (0.4-0.6 s); and 4) a proportionality constant C between fluctuations in SNA and fluctuations in MAP (0.3-3.4 mmHg/nV). The parameters of the model were determined that minimize the residual error between the simulated time series and the actual data time series for a stressful stimulus. Then we tested the ability of the transfer function to predict the MAP response to a nonstressful stimulus. In five of seven rats tested, the model's predictions were good, with mean cross-correlation coefficients for the predicted trials between 0.62 and 0.83. We show that multifiber renal SNA recordings can reliably predict changes in MAP in the unanesthetized rat. Thus the overall sympathetic drive to the cardiovascular system is indexed by renal SNA, although the vasomotor effectors driven by renal SNA control only approximately 20% of the blood cow.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3