Nitric oxide within the paraventricular nucleus mediates changes in renal sympathetic nerve activity

Author:

Zhang K.1,Mayhan W. G.1,Patel K. P.1

Affiliation:

1. Department of Physiology and Biophysics, University of NebraskaMedical Center, Omaha 68198, USA.

Abstract

The paraventricular nucleus (PVN) of the hypothalamus is known to be involved in the control of sympathetic outflow. The goal of the present study was to examine the role of nitric oxide within the PVN in the regulation of renal sympathetic nerve activity. Renal sympathetic nerve discharge (RSND), arterial blood pressure, and heart rate in response to the microinjection of nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA; 50, 100, and 200 pmol) into the PVN were measured in male Sprague-Dawley rats. Microinjection of L-NMMA elicited an increase in RSND, arterial blood pressure, and heart rate. Administration of NG-monomethyl-D-arginine (D-NMMA, 50-200 pmol) into the PVN did not change RSND, arterial pressure, or heart rate. Similarly, microinjection of another nitric oxide inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 100 nmol) also elicited an increase in RSND, arterial blood pressure, and heart rate. L-Arginine (100 nmol) reversed the effects of L-NAME in the PVN. Furthermore, microinjection of sodium nitroprusside (SNP; 50, 100, and 200 nmol) into the PVN elicited a significant decrease in RSND, arterial blood pressure, and heart rate. These effects of L-NMMA, L-NAME, and SNP on RSND and arterial blood pressure were not mediated by their vasoactive action because microinjection of phenylephrine and hydralazine did not elicit similar respective changes. In conclusion, our data indicate that endogenous nitric oxide within the PVN regulates sympathetic outflow via some inhibitory mechanisms. Altered nitric oxide mechanisms within the PVN may contribute to elevated sympathetic nerve activity observed during various diseases states such as heart failure and hypertension.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3