Consuming sucrose solution promotes leptin resistance and site specifically modifies hypothalamic leptin signaling in rats

Author:

Harris Ruth B. S.1

Affiliation:

1. Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia

Abstract

Rats consuming 30% sucrose solution and a sucrose-free diet (LiqS) become leptin resistant, whereas rats consuming sucrose from a formulated diet (HS) remain leptin responsive. This study tested whether leptin resistance in LiqS rats extended beyond a failure to inhibit food intake and examined leptin responsiveness in the hypothalamus and hindbrain of rats offered HS, LiqS, or a sucrose-free diet (NS). Female LiqS Sprague-Dawley rats initially only partially compensated for the calories consumed as sucrose, but energy intake matched that of HS and NS rats when they were transferred to calorimetry cages. There was no effect of diet on energy expenditure, intrascapular brown fat tissue (IBAT) temperature, or fat pad weight. A peripheral injection of 2 mg of leptin/kg on day 23 or day 26 inhibited energy intake of HS and NS but not LiqS rats. Inhibition occurred earlier in HS rats than in NS rats and was associated with a smaller meal size. Leptin had no effect on energy expenditure but caused a transient rise in IBAT temperature of HS rats. Leptin increased the phosphorylation of signal transducer and activator of transcription 3 (pSTAT3) in the hindbrain and ventromedial hypothalamus of all rats. There was a minimal effect of leptin in the arcuate nucleus, and only the dorsomedial hypothalamus showed a correlation between pSTAT3 and leptin responsiveness. These data suggest that the primary response to leptin is inhibition of food intake and the pattern of sucrose consumption, rather than calories consumed as sucrose, causes leptin resistance associated with site-specific differences in hypothalamic leptin signaling.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3