Signal transduction of aortic and carotid sinus baroreceptors is not modified by central command during spontaneous motor activity in decerebrate cats

Author:

Matsukawa Kanji1,Ishii Kei1,Kadowaki Akito1,Ishida Tomoko1,Idesako Mitsuhiro1,Liang Nan1

Affiliation:

1. Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan

Abstract

Our laboratory has suggested that central command provides selective inhibition of the cardiomotor component of aortic baroreflex at the start of exercise, preserving carotid sinus baroreflex. It is postulated that central command may modify the signal transduction of aortic baroreceptors, so as to decrease aortic baroreceptor input to the cardiovascular centers, and, thereby, can cause the selective inhibition of aortic baroreflex. To test the hypothesis, we directly analyzed the responses in multifiber aortic nerve activity (AoNA) and carotid sinus nerve activity (CsNA) during spontaneous motor activity in decerebrate, paralyzed cats. The increases of 62–104% in mean AoNA and CsNA were found during spontaneous motor activity, in proportion to a rise of 35 ± 3 mmHg (means ± SE) in mean arterial blood pressure (MAP), and had an attenuating tendency by restraining heart rate (HR) at the lower intrinsic frequency of 154 ± 6 beats/min. Brief occlusion of the abdominal aorta was conducted before and during spontaneous motor activity to produce a mechanically evoked increase in MAP and, thereby, to examine the stimulus-response relationship of arterial baroreceptors. Although the sensitivity of the MAP-HR baroreflex curve was markedly blunted during spontaneous motor activity, the stimulus-response relationships of AoNA and CsNA were not influenced by spontaneous motor activity, irrespective of the absence or presence of the HR restraint. Thus, it is concluded that aortic and carotid sinus baroreceptors can code beat-by-beat blood pressure during spontaneous motor activity in decerebrate cats and that central command is unlikely to modulate the signal transduction of arterial baroreceptors.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3