GTPase-Rac enhances depolarization-induced superoxide production by the macula densa during tubuloglomerular feedback

Author:

Liu Ruisheng1,Juncos Luis A.1

Affiliation:

1. Department of Physiology & Biophysics and Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson Mississippi

Abstract

Superoxide (O2 ) enhances tubuloglomerular feedback (TGF) by scavenging nitric oxide at the macula densa (MD). The primary source of O2 in the MD during TGF is NADPH oxidase, which is activated by membrane depolarization. While Rac, a small GTP-binding protein, has been shown to enhance NADPH oxidase activity, its role in O2 generation by the MD is unknown. We hypothesized that depolarization of the MD leads to translocation of Rac to the apical membrane, and its activation, in turn, augments O2 generation during TGF. We tested this by measuring membrane potential and increased O2 levels during TGF responses in isolated, perfused tubules containing the intact MD plaque. Switching tubular NaCl from 10 to 80 mM, which induces TGF, depolarized membrane potential by 28.4 ± 4.5% from control ( P < 0.05) and O2 levels from 124 ± 19 to 361 ± 27 U/min. This NaCl-induced depolarization and O2 generation were blocked by a Cl channel blocker, 5-nitro-2(3-phenylpropylamino) benzoic acid (NPPB; 10−6 M). Inhibition of Rac blunted NaCl-induced O2 generation by 47%. When the NaCl content of the MD perfusate was increased from 10 to 80 mM, immunointensity of Rac on the apical side increased from 32 ± 3.1 to 46 ± 2.5% of the total immunofluorescence in the MD, indicating that high NaCl induces the translocation of Rac to the apical membrane. This NaCl-induced Rac translocation was blocked by a Cl channel blocker, NPPB, indicating that depolarization of the MD induced Rac translocation. In conclusion, we found that depolarization of the MD during TGF leads to translocation of Rac to the apical membrane, which enhances O2 generation by the MD.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3