Ventral medullary extracellular fluid pH and blood flow during hypoxia

Author:

Nolan W. F.,Houck P. C.,Thomas J. L.,Davies D. G.

Abstract

Vascular responses of the ventral medulla and total brain to 30-60 min of isocapnic hypoxia (PaO2 = 32 +/- 2 Torr) were examined using radioactive microspheres in anesthetized, paralyzed, and artificially ventilated cats. Ventral medullary extracellular fluid (ECF) pH was measured using pH microelectrodes with tip diameters of 1-2 micrometers. Total brain blood flow (Q) increased significantly from a control value of 53 +/- 8 (mean +/- SE) to 160 +/- 42 ml.100 g-1.min-1 following 30-60 min of hypoxia. Ventral medullary Q increased from 28 +/- 5 to 97 +/- 20 ml.100 g-1.min-1 and ECF pH decreased by 0.15 +/- 0.06 pH U. Q responses are attributable to decreased vascular resistance as arterial pressure remained constant. The sensitivity of the ventral medullary vasculature to isocapnic hypoxia did not differ from that of the brain as a whole. The results show that under the conditions of our experiment, the ventral medullary vascular response to hypoxia is not sufficient to stabilize local ECF pH. The observation of simultaneously reduced pH and increased Q is consistent with a role for ECF H+ in mediating the cerebrovascular response to hypoxia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cerebral Vasoreactivity;Biology of Vascular Smooth Muscle: Vasoconstriction and Dilatation;2017

2. Integrative regulation of human brain blood flow;The Journal of Physiology;2014-02-28

3. Brain stem Po 2 and pH of the working heart-brain stem preparation during vascular perfusion with aqueous medium;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2001-08-01

4. Control of abdominal muscles;Progress in Neurobiology;1998-11

5. Ventilatory and metabolic effects of repeated hypoxia in conscious newborn rabbits;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;1994-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3