Affiliation:
1. Department of Zoology, University of Otago, Dunedin, New Zealand; and
2. Department of Biochemistry, School of Medical Sciences, University of Otago, Dunedin, New Zealand
Abstract
During certain stages in an animal's life cycle, energy requirements may exceed energy intake from the diet. The spawning migration of temperate eels is a textbook example of negative energy balance, forcing these fish to rely on stored fats (triacylglycerides) to provide their muscles with energy for swimming and their growing oocytes with the nutrients needed to develop and support healthy offspring. We predicted broad implications of this great need for endogenous triacylglycerides in terms of their packaging, transport, and ovarian uptake. To test this, serum lipid concentrations and transcript abundances of intestinal and hepatic triacylglyceride packagers and ovarian triacylglyceride modifiers and receivers were investigated throughout previtellogenesis (feeding phase) and into early vitellogenesis (fasting phase) in short-finned eels. A switch from exogenous to endogenous triacylglyceride packaging was seen as the liver upregulated transcript levels of apolipoprotein B and microsomal triacylglyceride transport protein and downregulated those of apolipoprotein E and lipoprotein lipase. In the intestine, the reverse response was observed. Furthermore, ovarian transcript abundances of triacylglyceride modifiers and receivers increased (apolipoprotein E, lipoprotein lipase, and vitellogenin receptor), indicative of increased triacylglyceride uptake during previtellogenesis. We propose that increased hepatic apolipoprotein B production is a conserved vertebrate response to prolonged periods of negative energy balance.
Funder
University of Otago Doctoral Scholarship
University of Otago Research Enhancement Grant
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献