Parathyroid hormone-related protein induction in focal stroke: a neuroprotective vascular peptide

Author:

Funk Janet L.1,Migliati Elton2,Chen Guanjie1,Wei Hongbing1,Wilson Jonathan3,Downey Katherine J.1,Mullarky Paul J.2,Coull Bruce M.4,McDonagh Paul F.5,Ritter Leslie S.43

Affiliation:

1. Departments of Medicine,

2. Physiology,

3. College of Nursing, University of Arizona, Tucson, Arizona 85724

4. Neurology, College of Medicine, and the

5. Surgery, and

Abstract

Parathyroid hormone-related protein (PTHrP) is a multifunctional peptide that enhances blood flow in non-central nervous system (CNS) vascular beds by causing vasodilation. PTHrP expression is induced in non-CNS organs in response to ischemia. Experiments were therefore undertaken to determine whether PTHrP can be induced in brain in response to ischemic injury and whether PTHrP can act locally as a vasodilator in the cerebral vasculature, an effect that could be neuroprotective in the setting of stroke. PTHrP expression was examined by Northern analysis and immunohistochemical staining in male Sprague-Dawley rats subjected to permanent middle cerebral artery occlusion (MCAO). Vasodilatory effects of superfused PTHrP(1–34) on pial arterioles were determined by intravital fluorescence microscopy. Effects of PTHrP(1–34) peptide administration on MCAO infarction size reduction were assessed. PTHrP expression was induced in the ischemic hemisphere as early as 4 h after MCAO and remained elevated for up to 24 h. Increased immunoreactive PTHrP at sites of ischemic tissue injury was located in the cerebral microvessels. Superfusion with PTHrP(1–34) peptide for up to 25 min increased pial arteriolar diameter by 30% in normal animals. In animals with permanent MCAO, PTHrP(1–34) peptide treatment significantly decreased cortical infarct size (−47%). In summary, PTHrP expression increases at sites of ischemic brain injury in the cerebrovasculature. This local increase in PTHrP could be an adaptive response that enhances blood flow to the ischemic brain, thus limiting cell injury.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3