Electrical excitability of roach (Rutilus rutilus) ventricular myocytes: effects of extracellular K+, temperature, and pacing frequency

Author:

Badr Ahmed12,Abu-Amra El-Sabry2,El-Sayed Mohamed F.2,Vornanen Matti1

Affiliation:

1. Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland

2. Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt

Abstract

Exercise, capture, and handling stress in fish can elevate extracellular K+ concentration ([K+]o) with potential impact on heart function in a temperature- and frequency-dependent manner. To this end, the effects of [K+]o on the excitability of ventricular myocytes of winter-acclimatized roach ( Rutilus rutilus) (4 ± 0.5°C) were examined at different test temperatures and varying pacing rates. Frequencies corresponding to in vivo heart rates at 4°C (0.37 Hz), 14°C (1.16 Hz), and 24°C (1.96 Hz) had no significant effect on the excitability of ventricular myocytes. Acute increase of temperature from 4 to 14°C did not affect excitability, but a further rise to 24 markedly decreased excitability: stimulus current and critical depolarization needed to elicit an action potential (AP) were ~25 and 14% higher, respectively, at 24°C than at 4°C and 14°C ( P < 0.05). This depression could be due to temperature-related mismatch between inward Na+ and outward K+ currents. In contrast, an increase of [K+]o from 3 to 5.4 or 8 mM at 24°C reduced the stimulus current needed to trigger AP. However, other aspects of excitability were strongly depressed by high [K+]o: maximum rate of AP upstroke and AP duration were drastically (89 and 50%, respectively) reduced at 8 mM [K+]o in comparison with 3 mM ( P < 0.05). As an extreme case, some myocytes completely failed to elicit all-or-none AP at 8 mM [K+]o at 24°C. Also, amplitude and overshoot of AP were reduced by elevation of [K+]o ( P < 0.05). Although high [K+]o antagonizes the negative effects of high temperature on excitation threshold, the precipitous depression of the rate of AP upstroke and complete loss of excitability in some myocytes suggest that the combination of high temperature and high [K+]o will severely impair ventricular excitability in roach.

Funder

Cultural Affairs and Missions Sector, Ministry of Higher Education

Suomen Kulttuurirahasto (Finnish Cultural Foundation)

Suomen Akatemia (Academy of Finland)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3