Tetradecylthioacetic acid downregulates cyclooxygenase 2 in the renal cortex of two-kidney, one-clip hypertensive rats

Author:

Bivol Liliana Monica,Hultström Michael,Gudbrandsen Oddrun A.,Berge Rolf K.,Iversen Bjarne M.

Abstract

The effect of tetradecylthioacetic acid (TTA) on the cyclooxygenase (COX) system was investigated in two-kidney, one-clip (2K1C) hypertensive rats. The systolic blood pressure (BP) was increased 6 wk after clipping to 183 ± 4 vs.127 ± 3 mmHg in TTA-treated 2K1C rats. The COX1 protein expression was not affected either by the 2K1C procedure or by TTA treatment. COX2 expression was upregulated in both kidneys, but to a greater extent in the clipped kidney. COX2 activity was 16 ± 3% in control and 38 ± 2% ( P < 0.001) in the clipped kidney, and COX2 protein expression was 1.3 ± 0.04 in control and 1.6 ± 0.12 in the clipped kidney ( P = 0.006). TTA reduced COX2 activity to control levels. Subcutaneously infusion of a COX2 inhibitor did not reduce BP. Peroxisome proliferator-activated receptors (PPARs) were detected in both kidneys, and PPARδ was upregulated in the nonclipped kidney after TTA treatment. PGE2in renal cortex was increased in 2K1C (31 ± 0.3 in the clipped and 28 ± 0.2 pg/ml nonclipped kidney, P < 0.001 compared with control). TTA lowered the PGE2to control levels. Renal blood flow (RBF) response to exogenous ANG II injected in the control and nonclipped kidney was exaggerated after indomethacin treatment but unchanged in the nonclipped kidney of the K1C TTA group. Overall, these results indicate that, after 6 wk of treatment, TTA downregulated the COX2 activity, which have potentially important effects on the regulation of renal hemodynamics but does not explain TTAs ability to lower BP.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3