Hypoxic control of the development of the surfactant system in the chicken: evidence for physiological heterokairy

Author:

Blacker Helen A.1,Orgeig Sandra1,Daniels Christopher B.1

Affiliation:

1. Environmental Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia

Abstract

The surfactant system, a complex mixture of lipids and proteins, controls surface tension in the lung and is crucial for the first breath at birth, and thereafter. Heterokairy is defined as plasticity of a developmental process within an individual. Here, we provide experimental evidence for the concept of heterokairy, as hypoxia induces a change in the onset and rate of development of surfactant, probably via endogenous glucocorticoids, to produce individuals capable of surviving early hatching. Chicken eggs were incubated under normoxic (21% O2) conditions throughout or under hypoxic (17% O2) conditions from day 10 of incubation. Embryos were sampled at days 16, 18, and 20 and also 24 h after hatching. In a second experiment, dexamethasone (Dex), tri-iodothyronine (T3), or a combination (Dex + T3) was administered 24 and 48 h before each time point. Both hypoxia and Dex accelerated maturation of the surfactant lipids by increasing total phospholipid (PL), disaturated phospholipid (DSP), and cholesterol (Chol) in lavage at days 16 and 18. Maturation of surfactant lipid composition was accelerated, with day 16 %DSP/PL, Chol/DSP, and Chol/PL resembling the ratios of day 20 control animals. The effect of Dex + T3was similar to that of Dex alone. Hypoxia increased plasma corticosterone levels at day 16, while plasma T3levels were not affected. Hence, exposure to hypoxia during critical developmental windows accelerates surfactant maturation, probably by increasing corticosterone production. This internal modulation of the developmental response to an external stimulus is a demonstration of physiological heterokairy.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3