Affiliation:
1. Thermosenselab, School of Design and Creative Arts, Loughborough University, Loughborough, United Kingdom
2. School of Design and Creative Arts, Loughborough University, Loughborough, United Kingdom
3. Thermosenselab, Skin Health Research Group, School of Health Sciences, University of Southampton, Southampton, United Kingdom
Abstract
Skin wetness sensing is important for thermal stress resilience. Individuals with multiple sclerosis (MS) present greater vulnerability to thermal stress; yet, it is unclear whether they present wetness-sensing abnormalities. We investigated the effects of MS on wetness sensing and their modulation with changes in mean skin temperature (Tsk). Twelve participants with MS [5 males (M)/7 females (F); 48.3 ± 10.8 yr; Expanded Disability Status Scale (EDSS) range: 1–7] and 11 healthy controls (4 M/7 F; 47.5 ± 11.3 yr) undertook three trials, during which they performed a quantitative sensory test with either a thermoneutral (30.9°C), warm (34.8°C), or cold (26.5°C) mean Tsk. Participants reported on visual analog scales local wetness perceptions arising from the static and dynamic application of a cold-, neutral-, and warm-wet probe (1.32 cm2; water content: 0.8 mL), to the index finger pad, forearm, and forehead. Data were analyzed for the group-level effect of MS, as well as for its individual variability. Our results indicated that MS did not alter skin wetness sensitivity at a group level, across the skin sites and temperature tested, neither under normothermia nor under conditions of shifted thermal state. However, when taking an individualized approach to profiling wetness-sensing abnormalities in MS, we found that 3 of the 12 participants with MS (i.e., 25% of the sample) presented a reduced wetness sensitivity on multiple skin sites and to different wet stimuli (i.e., cold, neutral, and warm wet). We conclude that some individuals with MS may possess reduced wetness sensitivity; however, this sensory symptom may vary greatly at an individual level. Larger-scale studies are warranted to characterize the mechanisms underlying such individual variability.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献