Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment

Author:

Martinez Carlo O.1,McHale Matthew J.1,Wells Jason T.1,Ochoa Oscar1,Michalek Joel E.12,McManus Linda M.345,Shireman Paula K.1657

Affiliation:

1. Departments of 1Surgery,

2. Epidemiology and Biostatistics,

3. Pathology, and

4. Periodontics, and

5. Sam and Ann Barshop Institute for Longevity and Aging Studies, at the University of Texas Health Science Center San Antonio; and

6. Medicine,

7. The South Texas Veterans Health Care System, San Antonio, Texas

Abstract

Muscle regeneration requires CC chemokine receptor 2 (CCR2) expression on bone marrow-derived cells; macrophages are a prominent CCR2-expressing cell in this process. CCR2−/− mice have severe impairments in angiogenesis, macrophage recruitment, and skeletal muscle regeneration following cardiotoxin (CTX)-induced injury. However, multiple chemokines activate CCR2, including monocyte chemotactic proteins (MCP)-1, -3, and -5. We hypothesized that MCP-1 is the chemokine ligand that mediates the impairments present in CCR2−/− mice. We examined muscle regeneration, capillary density, and cellular recruitment in MCP-1−/− and CCR2−/− mice following injury. Muscle regeneration and adipocyte accumulation, but not capillary density, were significantly impaired in MCP-1−/− compared with wild-type (WT) mice; however, muscle regeneration and adipocyte accumulation impairments were not as severe as observed in CCR2−/− mice. Although tissue levels of MCP-5 were elevated in MCP-1−/− mice compared with WT, the administration of MCP-5 neutralizing antibody did not alter muscle regeneration in MCP-1−/− mice. While neutrophil accumulation after injury was similar in all three mouse strains, macrophage recruitment was highest in WT mice, intermediate in MCP-1−/− mice, and severely impaired in CCR2−/− mice. In conclusion, while the absence of MCP-1 resulted in impaired macrophage recruitment and muscle regeneration, MCP-1−/− mice exhibit an intermediate phenotype compared with CCR2−/− mice. Intermediate macrophage recruitment in MCP-1−/− mice was associated with similar capillary density to WT, suggesting that fewer macrophages may be needed to restore angiogenesis vs. muscle regeneration. Finally, other chemokines, in addition to MCP-1 and MCP-5, may activate CCR2-dependent regenerative processes resulting in an intermediate phenotype in MCP-1−/− mice.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3