Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes

Author:

Tchkonia Tamara1,Giorgadze Nino1,Pirtskhalava Tamar1,Tchoukalova Yourka2,Karagiannides Iordanes1,Forse R. Armour3,DePonte Matthew4,Stevenson Michael4,Guo Wen1,Han Jianrong1,Waloga Gerri4,Lash Timothy L.1,Jensen Michael D.2,Kirkland James L.15

Affiliation:

1. Evans Department of Medicine and Departments of

2. Division of Endocrinology and Metabolism, Department of Internal Medicine, the Mayo Clinic, Rochester, Minnesota 55905; and

3. Surgery and

4. AdipoGenix, Boston, Massachusetts 02118

5. Biochemistry, Boston University Medical Center, Boston, Massachusetts 02118;

Abstract

Fat distribution varies among individuals with similar body fat content. Innate differences in adipose cell characteristics may contribute because lipid accumulation and lipogenic enzyme activities vary among preadipocytes cultured from different fat depots. We determined expression of the adipogenic transcription factors peroxisome proliferator activated receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein-α (C/EBP-α) and their targets in abdominal subcutaneous, mesenteric, and omental preadipocytes cultured in parallel from obese subjects. Subcutaneous preadipocytes, which had the highest lipid accumulation, glycerol-3-phosphate dehydrogenase (G3PD) activity, and adipocyte fatty acid binding protein (aP2) abundance, had highest PPAR-γ and C/EBP-α expression. Levels were intermediate in mesenteric and lowest in omental preadipocytes. Overexpression of C/EBP-α in transfected omental preadipocytes enhanced differentiation. The proportion of differentiated cells in colonies derived from single subcutaneous preadipocytes was higher than in mesenteric or omental clones. Only cells that acquired lipid inclusions exhibited C/EBP-α upregulation, irrespective of depot origin. Thus regional variation in adipogenesis depends on differences at the level of transcription factor expression and is a trait conferred on daughter cells.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3