Septic shock induces distinct changes in sympathetic nerve activity to the heart and kidney in conscious sheep

Author:

Ramchandra Rohit1,Wan Li1,Hood Sally G.1,Frithiof Robert1,Bellomo Rinaldo1,May Clive N.1

Affiliation:

1. Howard Florey Institute, University of Melbourne, Parkville, Australia

Abstract

Sepsis and septic shock are the chief cause of death in intensive care units, with mortality rates between 30 and 70%. In a large animal model of septic shock, we have demonstrated hypotension, increased cardiac output, and tachycardia, together with renal vasodilatation and renal failure. The changes in cardiac sympathetic nerve activity (CSNA) that may contribute to the tachycardia have not been investigated, and the changes in renal SNA (RSNA) that may mediate the changes in renal blood flow and function are unclear. We therefore recorded CSNA and RSNA during septic shock in conscious sheep. Septic shock was induced by administration of Escherichia coli, which caused a delayed hypotension and an immediate, biphasic increase in heart rate (HR) associated with similar changes in CSNA. After E. coli, RSNA decreased for over 3 h, followed by a sustained increase (180%), whereas renal blood flow progressively increased and remained elevated. There was an initial diuresis, followed by oliguria and decreased creatinine clearance. There were differential changes in the range of the arterial baroreflex curves; it was depressed for HR, increased for CSNA, and unchanged for RSNA. Our findings, recording CSNA for the first time in septic shock, suggest that the increase in SNA to the heart is not driven solely by unloading of baroreceptors and that the increase has an important role to increase HR and cardiac output. There was little correlation between the changes in RSNA and renal blood flow, suggesting that the renal vasodilatation was mediated mainly by other mechanisms.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3