VRQ397 (CRAVKY): a novel noncompetitive V2 receptor antagonist

Author:

Rihakova L.1,Quiniou C.1,Hamdan F. F.1,Kaul R.2,Brault S.1,Hou X.1,Lahaie I.1,Sapieha P.1,Hamel D.1,Shao Z.13,Gobeil F.4,Hardy P.1,Joyal J-S.1,Nedev H.3,Duhamel F.1,Beauregard K.1,Heveker N.5,Saragovi H. U.3,Guillon G.6,Bouvier M.5,Lubell W. D.2,Chemtob S.1

Affiliation:

1. Hôpital Ste Justine, Research Center, Departments of Pediatrics and Pharmacology, Montreal;

2. Chemistry, Université de Montréal, Montreal;

3. Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada;

4. Department of Pharmacology, Sherbrooke University, Sherbrooke;

5. Departments of Biochemistry and

6. Department of Endocrinology, INSERM U661, Université Montpellier I, France

Abstract

Vasopressin type 2 receptor (V2R) exhibits mostly important properties for hydroosmotic equilibrium and, to a lesser extent, on vasomotricity. Drugs currently acting on this receptor are analogs of the natural neuropeptide, arginine vasopressin (AVP), and hence are competitive ligands. Peptides that reproduce specific sequences of a given receptor have lately been reported to interfere with its action, and if such molecules arise from regions remote from the binding site they would be anticipated to exhibit noncompetitive antagonism, but this has yet to be shown for V2R. Six peptides reproducing juxtamembranous regions of V2R were designed and screened; the most effective peptide, cravky (labeled VRQ397), was characterized. VRQ397 was potent (IC50= 0.69 ± 0.25 nM) and fully effective in inhibiting V2R-dependent physiological function, specifically desmopressin-l-desamino-8-arginine-vasopressin (DDAVP)-induced cremasteric vasorelaxation; this physiological functional assay was utilized to avoid overlooking interference of specific signaling events. A dose-response profile revealed a noncompetitive property of VRQ397; correspondingly, VRQ397 bound specifically to V2R-expressing cells could not displace its natural ligand, AVP, but modulated AVP binding kinetics (dissociation rate). Specificity of VRQ397 was further confirmed by its inability to bind to homologous V1 and oxytocin receptors and its inefficacy to alter responses to stimulation of these receptors. VRQ397 exhibited pharmacological permissiveness on V2R-induced signals, as it inhibited DDAVP-induced PGI2generation but not that of cAMP or recruitment of β-arrestin2. Consistent with in vitro and ex vivo effects as a V2R antagonist, VRQ397 displayed anticipated in vivo aquaretic efficacy. We hereby describe the discovery of a first potent noncompetitive antagonist of V2R, which exhibits functional selectivity, in line with properties of a negative allosteric modulator.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3