The anorectic hormone amylin contributes to feeding-related changes of neuronal activity in key structures of the gut-brain axis

Author:

Riediger T.1,Zuend D.1,Becskei C.1,Lutz T. A.1

Affiliation:

1. Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland

Abstract

Amylin is a peptide hormone that is cosecreted with insulin from the pancreas during and after food intake. Peripherally injected amylin potently inhibits feeding by acting on the area postrema (AP), a circumventricular organ lacking a functional blood-brain barrier. We recently demonstrated that AP neurons are excited by a near physiological concentration of amylin. However, the subsequent neuronal mechanisms and the relevance of endogenously released amylin for the regulation of food intake are poorly understood. Therefore, we investigated 1) amylin's contribution to feeding-induced c-Fos expression in the rat AP and its ascending projection sites, and 2) amylin's ability to reverse fasting-induced c-Fos expression in the lateral hypothalamic area (LHA). Similar to amylin (20 μg/kg sc), refeeding of 24-h food-deprived rats induced c-Fos expression in the AP, the nucleus of the solitary tract, the lateral parabrachial nucleus, and the central nucleus of the amygdala. In AP-lesioned rats, the amylin-induced c-Fos expression in each of these sites was blunted, indicating an AP-mediated activation of these structures. Pretreatment with the amylin antagonist AC-187 (1 mg/kg sc) inhibited feeding-induced c-Fos expression in the AP. Food deprivation activated LHA neurons, a response known to be associated with hunger. This effect was reversed within 2 h after refeeding and also in nonrefed animals that received amylin. In summary, our data provide the first evidence that feeding-induced amylin release activates AP neurons projecting to subsequent relay stations known to transmit meal-related signals to the forebrain. Activation of this pathway seems to coincide with an inhibition of LHA neurons.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3