Effects of adenosine, exercise, and moderate acute hypoxia on energy substrate utilization of human skeletal muscle

Author:

Heinonen Ilkka123,Kemppainen Jukka12,Kaskinoro Kimmo14,Peltonen Juha E.5,Sipilä Hannu T.1,Nuutila Pirjo16,Knuuti Juhani1,Boushel Robert7,Kalliokoski Kari K.1

Affiliation:

1. Turku PET Centre,

2. Departments of 2Clinical Physiology and Nuclear Medicine,

3. Research Unit of Applied and Preventive Cardiovascular Medicine, Turku University Hospital, University of Turku, Turku, Finland;

4. Anesthesiology and Intensive Care, and

5. Unit for Sports and Exercise Medicine, Institute of Clinical Medicine, University of Helsinki, Helsinki, Finland; and

6. Medicine, and

7. Centre for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract

Glucose metabolism increases in hypoxia and can be influenced by endogenous adenosine, but the role of adenosine for regulating glucose metabolism at rest or during exercise in hypoxia has not been elucidated in humans. We studied the effects of exogenous adenosine on human skeletal muscle glucose uptake and other blood energy substrates [free fatty acid (FFA) and lactate] by infusing adenosine into the femoral artery in nine healthy young men. The role of endogenous adenosine was studied by intra-arterial adenosine receptor inhibition (aminophylline) during dynamic one-leg knee extension exercise in normoxia and acute hypoxia corresponding to ∼3,400 m of altitude. Extraction and release of energy substrates were studied by arterial-to-venous (A-V) blood samples, and total uptake or release was determined by the product of A-V differences and muscle nutritive perfusion measured by positron emission tomography. The results showed that glucose uptake increased from a baseline value of 0.2 ± 0.2 to 2.0 ± 2.2 μmol·100 g−1·min−1 during adenosine infusion ( P < 0.05) at rest. Although acute hypoxia enhanced arterial FFA levels, it did not affect muscle substrate utilization at rest. During exercise, glucose uptake was higher (195%) during acute hypoxia compared with normoxia ( P = 0.058), and aminophylline had no effect on energy substrate utilization during exercise, despite that arterial FFA levels were increased. In conclusion, exogenous adenosine at rest and acute moderate hypoxia during low-intensity knee-extension exercise increases skeletal muscle glucose uptake, but the increase in hypoxia appears not to be mediated by adenosine.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3