Electric field strength of membrane lipids from vertebrate species: membrane lipid composition and Na+-K+-ATPase molecular activity

Author:

Starke-Peterkovic Thomas,Turner Nigel,Else Paul L.,Clarke Ronald J.

Abstract

Intramembrane electric field strength is a very likely determinant of the activity of ion-transporting membrane proteins in living cells. In the absence of any transmembrane electrical potential or surface potential, its magnitude is determined by the dipole potential of the membrane's lipid components and their associated water of hydration. Here we have used a fluorometric method to quantify the dipole potential of vesicles formed from lipids extracted from kidney and brain of 11 different animal species from four different vertebrate classes. The dipole potential was compared with the fatty acid composition and with the Na+-K+-ATPase molecular activity of each preparation. The magnitude of the dipole potential was found to be relatively constant across all animal species, i.e., 236–334 mV for vesicles prepared from the total membrane lipids and 223–256 mV for phospholipids alone. The significantly lower value for phospholipids alone is potentially related to the removal of cholesterol and/or other common soluble lipid molecules from the membrane. Surprisingly, no significant dependence of the dipole potential on fatty acid composition was found. This may, however, be due to concomitant compensatory variations in lipid head group composition. The molecular activity of the Na+-K+-ATPase was found to increase with increasing dipole potential. The fact that the dipole potential is maintained at a relatively constant value over a wide range of animal species suggests that it may play a fundamental role in ensuring correct ion pump conformation and function within the membrane.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3