Glycine enhances muscle protein mass associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing TLR4 and NOD2 signaling in piglets challenged with LPS

Author:

Liu Yulan1,Wang Xiuying1,Wu Huanting1,Chen Shaokui1,Zhu Huiling1,Zhang Jing1,Hou Yongqing1,Hu Chien-An Andy12,Zhang Guolong13

Affiliation:

1. Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China;

2. Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico; and

3. Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma

Abstract

Pro-inflammatory cytokines play a critical role in the pathophysiology of muscle atrophy. We hypothesized that glycine exerted an anti-inflammatory effect and alleviated lipopolysaccharide (LPS)-induced muscle atrophy in piglets. Pigs were assigned to four treatments including the following: 1) nonchallenged control, 2) LPS-challenged control, 3) LPS+1.0% glycine, and 4) LPS+2.0% glycine. After receiving the control, 1.0 or 2.0% glycine-supplemented diets, piglets were treated with either saline or LPS. At 4 h after treatment with saline or LPS, blood and muscle samples were harvested. We found that 1.0 or 2.0% glycine increased protein/DNA ratio, protein content, and RNA/DNA ratio in gastrocnemius or longissimus dorsi (LD) muscles. Glycine also resulted in decreased mRNA expression of muscle atrophy F-box ( MAFbx) and muscle RING finger 1 ( MuRF1) in gastrocnemius muscle. In addition, glycine restored the phosphorylation of Akt, mammalian target of rapamycin (mTOR), eukaryotic initiation factor 4E binding protein 1 (4E-BP1), and Forkhead Box O 1 (FOXO1) in gastrocnemius or LD muscles. Furthermore, glycine resulted in decreased plasma tumor necrosis factor-α (TNF-α) concentration and muscle TNF-α mRNA abundance. Moreover, glycine resulted in decreased mRNA expresson of Toll-like receptor 4 ( TLR4), nucleotide-binding oligomerization domain protein 2 ( NOD2), and their respective downstream molecules in gastrocnemius or LD muscles. These results indicate glycine enhances muscle protein mass under an inflammatory condition. The beneficial roles of glycine on the muscle are closely associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing the activation of TLR4 and/or NOD2 signaling pathways.

Funder

National Natural Science Foundation of China (NSFC)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3