Corticotropin-releasing factor receptor subtypes mediating nutritional suppression of estrous behavior in Syrian hamsters

Author:

Seymour Patricia L.,Dettloff Samantha L.,Jones Juli E.,Wade George N.

Abstract

Caloric deprivation inhibits reproduction, including copulatory behaviors, in female mammals. Decreases in metabolic fuel availability are detected in the hindbrain, and this information is relayed to the forebrain circuits controlling estrous behavior by neuropeptide Y (NPY) projections. In the forebrain, the nutritional inhibition of estrous behavior appears to be mediated by corticotropin-releasing factor (CRF) or urocortin-signaling systems. Intracerebroventricular (ICV) infusion of the CRF antagonist, astressin, prevents the suppression of lordosis by food deprivation and by NPY treatment in Syrian hamsters. These experiments sought to determine which CRF receptor type(s) is involved. ICV infusion of the CRF receptor subtype CRFR2-selective agonists urocortin 2 and 3 (UCN2, UCN3) inhibited sexual receptivity in hormone-primed, ovariectomized hamsters. Furthermore, the CRFR2-selective antagonist, astressin 2B, prevented the inhibition of estrous behavior by UCN2 and by NPY, consistent with a role for CRFR2. On the other hand, astressin 2B did not prevent the inhibition of behavior induced by 48-h food deprivation or ICV administration of CRF, a mixed CRFR1 and CRFR2 agonist, suggesting that activation of CRFR1 signaling is sufficient to inhibit sexual receptivity in hamsters. Although administration of CRFR1-selective antagonists (NBI-27914 and CP-154,526) failed to reverse the inhibition of receptivity by CRF treatment, we could not confirm their biological effectiveness in hamsters. The most parsimonious interpretation of these findings is that, although NPY inhibits estrous behavior via downstream CRFR2 signaling, food deprivation may exert its inhibition via both CRFR1 and CRFR2 and that redundant neuropeptide systems may be involved.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3