Incomplete free fatty acid oxidation by ascites tumor cells under low oxygen tension

Author:

Ookhtens M.,Baker N.

Abstract

We tried to understand why our earlier estimates of fatty acid (FA) oxidation rates under the nearly anaerobic state of the Ehrlich ascites tumor (EAT) in vivo were even greater than those found in vitro under aerobic conditions. Using tracers [1–14C]linoleate, [1–14C]-, and [9,10–3H]palmitate, and NaH14CO3, we estimated essential and nonessential FA oxidation rates to CO2 + H2O by EAT in living mice and in vitro under aerobic and anaerobic conditions. Sequestration of intraperitoneally (ip)-injected 14C-FFA allowed a selective labeling of the tumor versus the host; thus, breath 14CO2 could be used to estimate the maximum rate of FA oxidation in vivo by the tumor. Initially, we measured breath 14CO2 following NaH14CO3 injections and developed a multicompartmental model to simulate the tumor-host HCO-3-CO2 system. This model was integrated with our earlier model for tumor FA turnover. The integrated model was fitted to breath 14CO2 data from mice injected ip with 14C-FFA to compute tumor FA oxidation rates. Both essential and nonessential FA were oxidized to CO2 at similar rates. The maximum rate of total FA oxidation to CO2 was 5–6 nmol FA X min-1 X 7-ml tumor-1, about 5–10 times lower than all previous estimates obtained in vitro and in vivo. To resolve this dilemma we used doubly labeled [1–14C; 9,10–3H]palmitate and found that under aerobic conditions, in vitro, EAT formed 3H2O and 14CO2 at nearly equal rates. These rates were suppressed markedly but unequally at low PO2. Anaerobic suppression of 14CO2 formation greatly exceeded that of 3H2O formation. As a result 3H2O/14CO2 reached a value of congruent to 10 at low PO2. Our data indicate that under the nearly anaerobic conditions of a growing EAT in vivo, the partial beta-oxidation of FA to 2C + H2O takes place at a 5 to 10 times faster rate than the complete oxidation of FA to CO2 + H2O. This finding can account for earlier apparent inconsistencies in the literature, since aerobic studies of 14C-FA oxidation to 14CO2 in vitro and of 3H-FA oxidation to 3H2O under nearly anaerobic conditions would both overestimate greatly the rate of FA oxidation to CO2 by EAT in vivo.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Endothelial Cells Get β-ox-ed In to Support Lymphangiogenesis;Developmental Cell;2017-01

2. Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;1984-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3