Abstract
This investigation was principally undertaken to examine the mechanism of Cl- transport across the Aplysia californica intestinal epithelium. Previous results have shown: 1) the transmural potential difference (psi m leads to s) and the mucosal membrane potential difference (psi m) to be negative relative to the mucosal solution, 2) mucosal D-glucose hyperpolarized psi m leads to s and depolarized psi m, 3) mucosal D-glucose significantly increased intracellular Cl- activity (aiCl), however the electrochemical potential (-mu i) for intracellular Cl- was significantly less in both cases, than the -muCl in the mucosal solution, 4) replacing Cl- in the bathing medium with SO-4(2) significantly reduced both psi m and psi m leads to s, and 5) the energy within the electrochemical potential difference for Na+ (delta -mu Na) directed from mucosa to cytosol was energetically adequate so that intracellular Cl- accumulation could occur. New results showed: 1) psi m and psi m leads to s to significantly hyperpolarize when Na+ was replaced with Tris+ in the bathing medium, 2) aiCl decreased from 13.9 +/- 0.5 to 9.1 +/- 0.3 mM when Na+ was replaced with Tris+ in the bathing medium. The intracellular -muCl, both in the presence and absence of Na+, was significantly less than -muCl in the mucosal medium. These results suggest that Na+ and Cl- transport across the mucosal membrane are not mechanistically coupled and that an active extrusion mechanism for Cl- exists in the lateral-serosal membrane of the surface epithelial cells of A. californica intestine.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Chloride ATPase Pumps in Epithelia;Epithelial Transport Physiology;2009-10-15
2. The Cl− ATPase pump;International Congress Series;2004-12
3. Chloride ATPase pumps in nature: do they exist?;Biological Reviews of the Cambridge Philosophical Society;2003-05
4. Chloride-ATPase dephosphorylation inAplysia gut;Journal of Experimental Zoology;2002-05-30
5. Cl−-ATPases: biological active transporters;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2001-10