Sodium chloride absorption across the body surface: frog skins and other epithelia

Author:

Kirschner L. B.

Abstract

Sodium chloride transfer across isolated frog skin is described by the well-known Koefoed Johnsen-Ussing (KU) model, the central features of which are 1) a two-step, active, inward transport of Na+, and 2) passive cotransfer of Cl-, which is coupled electrically to Na+ movement under open-circuit conditions. However, NaCl absorption by the frog skin in vivo involves active inward transport of both ions by completely independent systems. Electrical neutrality is maintained by countertransfer of H+ (exchanged for Na+) and HCO-3 (exchanged for Cl-). This behavior is called the Krogh (KR) model. The KU and KR models share some features, notably amiloride sensitivity and participation of the Na+-K+-ATPase in Na+ transport, but the differences between them are fundamental. The latter appear to be due to the use of different experimental conditions. Intact frogs are usually studied in dilute (approximatley 1 mM) external solutions, while Ringer solution is used in most work on isolated skins. The skin is virtually impermeable to Cl- in dilute external media but permeable in Ringer solution. This concentration-dependent change in PCl can explain most of the differences between KU and KR models. Regulation of blood NaCl concentration in freshwater aquatic animals requires active uptake of both Na+ and Cl-. Data on representatives of four phyla show that the KR model describes the transport behavior in all of them. Such similarities in unrelated animals suggest that the transport mechanisms evolved very early in marine ancestors of modern freshwater forms. The implications of this suggestion are considered.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3