Reduced uterine perfusion pressure causes loss of pancreatic β-cell area but normal function in fetal rat offspring

Author:

Akhaphong Brian1,Lockridge Amber1,Jo Seokwon1,Mohan Ramkumar1,Wilcox Jacob A.2,Wing Cameron R.2,Regal Jean F.2,Alejandro Emilyn U.1ORCID

Affiliation:

1. Department of Integrative Biology & Physiology, University of Minnesota: Twin Cities, Minnesota

2. Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota

Abstract

Maternal hypertension during pregnancy is a major risk factor for intrauterine growth restriction (IUGR), which increases susceptibility to cardiovascular and metabolic disease in adulthood through unclear mechanisms. The aim of this study was to characterize the pancreatic β-cell area and function in the fetal rat offspring of a reduced uterine perfusion pressure (RUPP) model of gestational hypertension. At embryonic day 19.5, RUPP dams exhibited lower body weight, elevated mean blood pressure, reduced litter size, and higher blood glucose compared with sham-operated controls. In RUPP placental lysates, a nonsignificant change in mammalian target of rapamycin (mTOR) activity markers, phosphorylated S6 at serine 240, and phosphorylated AKT (at S473) was observed. RUPP offspring showed significantly reduced β-cell-to-pancreas area and increased β-cell death but normal insulin levels in serum. Isolated islets had normal insulin content and secretory function in response to glucose and palmitate. Fetal pancreatic lysates showed a tendency for reduced insulin levels, with a significant reduction in total mTOR protein with RUPP surgery. In addition, its downstream complex 2 targets phosphorylation of AKT at S473, and pAKT at Thr308 tended to be reduced in the fetal RUPP pancreas. Altogether, these data show that RUPP offspring demonstrated increased β-cell death, reduced β-cell area, and altered nutrient-sensor mTOR protein level in the pancreas. This could represent a mechanistic foundation in IUGR offspring’s risk for enhanced susceptibility to type 2 diabetes and other metabolic vulnerabilities seen in adulthood.

Funder

NIH NIDDK

NIH

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3