Hypotension in the chronically hypoxic chicken embryo is related to the β-adrenergic response of chorioallantoic and femoral arteries and not to bradycardia

Author:

Lindgren Isa1,Crossley Dane2,Villamor Eduardo3,Altimiras Jordi1

Affiliation:

1. IFM Biology, Division of Zoology, Linköping University, Linköping, Sweden;

2. Department of Biological Sciences, University of North Texas, Denton, Texas; and

3. Department of Pediatrics, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands

Abstract

Prolonged fetal hypoxia leads to growth restriction and can cause detrimental prenatal and postnatal alterations. The embryonic chicken is a valuable model to study the effects of prenatal hypoxia, but little is known about its long-term effects on cardiovascular regulation. We hypothesized that chicken embryos incubated under chronic hypoxia would be hypotensive due to bradycardia and βAR-mediated relaxation of the systemic and/or the chorioallantoic (CA) arteries. We investigated heart rate, blood pressure, and plasma catecholamine levels in 19-day chicken embryos (total incubation 21 days) incubated from day 0 in normoxia or hypoxia (14–15% O2). Additionally, we studied α-adrenoceptor (αAR)-mediated contraction, relaxation to the β-adrenoceptor (βAR) agonist isoproterenol, and relaxation to the adenylate cyclase activator forskolin in systemic (femoral) and CA arteries (by wire myography). Arterial pressure showed a trend toward hypotension in embryos incubated under chronic hypoxic conditions compared with the controls (mean arterial pressure 3.19 ± 0.18 vs. 2.59 ± 0.13 kPa, normoxia vs. hypoxia, respectively. P = 0.056), without an accompanied bradycardia and elevation in plasma norepinephrine and lactate levels. All vessels relaxed in response to βAR stimulation with isoproterenol, but the CA arteries completely lacked an αAR response. Furthermore, hypoxia increased the sensitivity of femoral arteries (but not CA arteries) to isoproterenol. Hypoxia also increased the responsiveness of femoral arteries to forskolin. In conclusion, we suggest that hypotension in chronic hypoxic chicken embryos is the consequence of elevated levels of circulating catecholamines acting in vascular beds with exclusive (CA arteries) or exacerbated (femoral arteries) βAR-mediated relaxation, and not a consequence of bradycardia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3