Author:
Gelsema A. J.,Bouman L. N.,Karemaker J. M.
Abstract
The short-latency effect on heart rate of peripheral nerve stimulation was studied in decerebrate cats. Selective activation (17-40 microA, 100 Hz, 1 s long) of low-threshold fibers in the nerves to the triceps surae muscle yielded isometric contractions of maximal force that were accompanied by a cardiac cycle length shortening within 0.4 s from the start of stimulation. This effect was abolished by pharmacologically induced neuromuscular blockade. The cardiac cycle length shortening during paralysis reappeared after a 6- to 10-fold increase of the stimulation strength. Cutaneous (sural) nerve stimulation (15-25 microA, 100 Hz, 1 s long) elicited reflex contractions in the stimulated limb, which were also accompanied by a cardiac acceleration with similar latency. Paralysis prevented the reflex contractions and reduced the cardiac response in some cats and abolished it in others. The response reappeared in either case after a 5- to 10-fold increase of the stimulus strength. It is concluded that muscle nerve and cutaneous nerve activity both cause a similar cardiac acceleration with a latency of less than 0.4 s. The response to muscle nerve stimulation is elicited by activity in group III afferents. It is excluded that the cardiac response to nerve stimulation is secondary to a change in the respiratory pattern.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献