Affiliation:
1. The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
2. Department of Obstetrics and Gynecology, Mie University, Mie, Japan
Abstract
Antenatal glucocorticoids improve outcomes among premature infants but are associated with hyperglycemia, which can exacerbate hypoxic-ischemic injury. It is still unclear how antenatal glucocorticoids or hyperglycemia modulate fetal cardiovascular adaptations to severe asphyxia. In this study, preterm fetal sheep received either saline or 12 mg im maternal dexamethasone, followed 4 h later by complete umbilical cord occlusion (UCO) for 25 min. An additional cohort of fetuses received titrated glucose infusions followed 4 h later by UCO to control for the possibility that hyperglycemia contributed to the cardiovascular effects of dexamethasone. Fetuses were studied for 7 days after UCO. Maternal dexamethasone was associated with fetal hyperglycemia ( P < 0.001), increased arterial pressure ( P < 0.001), and reduced femoral ( P < 0.005) and carotid ( P < 0.05) vascular conductance before UCO. UCO was associated with bradycardia, femoral vasoconstriction, and transient hypertension. For the first 5 min of UCO, fetal blood pressure in the dexamethasone-asphyxia group was greater than saline-asphyxia ( P < 0.001). However, the relative increase in arterial pressure was not different from saline-asphyxia. Fetal heart rate and femoral vascular conductance fell to similar nadirs in both saline and dexamethasone-asphyxia groups. Dexamethasone did not affect the progressive decline in femoral vascular tone or arterial pressure during continuing UCO. By contrast, there were no effects of glucose infusions on the response to UCO. In summary, maternal dexamethasone but not fetal hyperglycemia increased fetal arterial pressure before and for the first 5 min of prolonged UCO but did not augment the cardiovascular adaptations to acute asphyxia.
Funder
New Zealand Lottery Grants Board
Manatu Hauora | Health Research Council of New Zealand
Auckland Medical Research Foundation
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献