Effect of initial core temperature on hyperthermic hyperventilation during prolonged submaximal exercise in the heat

Author:

Tsuji Bun1,Honda Yasushi1,Fujii Naoto1,Kondo Narihiko2,Nishiyasu Takeshi1

Affiliation:

1. Institute of Health and Sports Science, University of Tsukuba, Tsukuba City, Ibaraki, Japan; and

2. Faculty of Human Development, Kobe University, Kobe, Japan

Abstract

We investigated whether a core temperature threshold for hyperthermic hyperventilation is seen during prolonged submaximal exercise in the heat when core temperature before the exercise is reduced and whether the evoked hyperventilatory response is affected by altering the initial core temperature. Ten male subjects performed three exercise trials at 50% of peak oxygen uptake in the heat (37°C and 50% relative humidity) after altering their initial esophageal temperature (Tes). Initial Tes was manipulated by immersion for 25 min in water at 18°C (Precooling), 35°C (Control), or 40°C (Preheating). Tes after the water immersion was significantly higher in the Preheating trial (37.5 ± 0.3°C) and lower in the Precooling trial (36.1 ± 0.3°C) than in the Control trial (36.9 ± 0.3°C). In the Precooling trial, minute ventilation (V̇e) showed little change until Tes reached 37.1 ± 0.4°C. Above this core temperature threshold, V̇e increased linearly in proportion to increasing Tes. In the Control trial, V̇e increased as Tes increased from 37.0°C to 38.6°C after the onset of exercise. In the Preheating trial, V̇e increased from the initially elevated levels of Tes (from 37.6 to 38.6°C) and V̇e. The sensitivity of V̇e to increasing Tes above the threshold for hyperventilation (the slope of the Tes-V̇e relation) did not significantly vary across trials (Precooling trial = 10.6 ± 5.9, Control trial = 8.7 ± 5.1, and Preheating trial = 9.2 ± 6.9 L·min−1·°C−1). These results suggest that during prolonged submaximal exercise at a constant workload in humans, there is a clear core temperature threshold for hyperthermic hyperventilation and that the evoked hyperventilatory response is unaffected by altering initial core temperature.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3