Ventilation changes associated with hatching and maturation of an endothermic phenotype in the Pekin duck, Anas platyrhynchos domestica

Author:

Sirsat Tushar S.1,Dzialowski Edward M.1

Affiliation:

1. Developmental Integrative Biology Research Group, Department of Biological Science, University of North Texas, Denton, Texas

Abstract

Precocial birds begin embryonic life with an ectothermic metabolic phenotype and rapidly develop an endothermic phenotype after hatching. Switching to a high-energy, endothermic phenotype requires high-functioning respiratory and cardiovascular systems to deliver sufficient environmental oxygen to the tissues. We measured tidal volume (VT), breathing frequency (ƒ), minute ventilation (V̇e), and whole-animal oxygen consumption (V̇o2) in response to gradual cooling from 37.5°C (externally pipped paranates, EP) or 35°C (hatchlings) to 20°C along with response to hypercapnia during developmental transition from an ectothermic, EP paranate to endothermic hatchling. To examine potential eggshell constraints on EP ventilation, we repeated these experiments in artificially hatched early and late EP paranates. Hatchlings and artificially hatched late EP paranates were able to increase V̇o2 significantly in response to cooling. EP paranates had high ƒ that decreased with cooling, coupled with an unchanging low VT and did not respond to hypercapnia. Hatchlings had significantly lower ƒ and higher VT and V̇e that increased with cooling and hypercapnia. In response to artificial hatching, all ventilation values quickly reached those of hatchlings and responded to hypercapnia. The timing of artificial hatching influenced the temperature response, with only artificially hatched late EP animals, exhibiting the hatchling ventilation response to cooling. We suggest one potential constraint on ventilatory responses of EP paranates is the rigid eggshell, limiting air sac expansion during inhalation and constraining VT. Upon natural or artificial hatching, the VT limitation is removed and the animal is able to increase VT, V̇e, and thus V̇o2, and exhibit an endothermic phenotype.

Funder

National Science Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3