Changes in microvascular density differentiate metabolic health outcomes in monkeys with prior radiation exposure and subsequent skeletal muscle ECM remodeling

Author:

Fanning K. M.1ORCID,Pfisterer B.1,Davis A. T.1,Presley T. D.2,Williams I. M.3,Wasserman D. H.3,Cline J. M.1,Kavanagh K.1

Affiliation:

1. Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina;

2. Department of Chemistry, Winston Salem State University, Winston-Salem, North Carolina; and

3. Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee

Abstract

Radiation exposure accelerates the onset of age-related diseases such as diabetes, cardiovascular disease, and neoplasia and, thus, lends insight into in vivo mechanisms common to these disorders. Fibrosis and extracellular matrix (ECM) remodeling, which occur with aging and overnutrition and following irradiation, are risk factors for development of type 2 diabetes mellitus. We previously demonstrated an increased incidence of skeletal muscle insulin resistance and type 2 diabetes mellitus in monkeys that had been exposed to whole body irradiation 5–9 yr prior. We hypothesized that irradiation-induced fibrosis alters muscle architecture, predisposing irradiated animals to insulin resistance and overt diabetes. Rhesus macaques ( Macaca mulatta, n = 7–8/group) grouped as nonirradiated age-matched controls (Non-Rad-CTL), irradiated nondiabetic monkeys (Rad-CTL), and irradiated monkeys that subsequently developed diabetes (Rad-DM) were compared. Prior radiation exposure resulted in persistent skeletal muscle ECM changes, including a relative overabundance of collagen IV and a trend toward increased transforming growth factor-β1. Preservation of microvascular markers differentiated the irradiated diabetic and nondiabetic groups. Microvascular density and plasma nitrate and heat shock protein 90 levels were lower in Rad-DM than Rad-CTL. These results are consistent with a protective effect of abundant microvasculature in maintaining glycemic control within radiation-induced fibrotic muscle.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)

HHS | National Institutes of Health (NIH)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3