Author:
O'Leary Deborah D.,Shoemaker J. Kevin,Edwards Michael R.,Hughson Richard L.
Abstract
Beat-by-beat estimates of total peripheral resistance (TPR) can be obtained from continuous measurements of cardiac output by using Doppler ultrasound and noninvasive mean arterial blood pressure (MAP). We employed transfer function analysis to study the heart rate (HR) and vascular response to spontaneous changes in blood pressure from the relationships of systolic blood pressure (SBP) to HR (SBP→HR), MAP to total peripheral resistance (TPR) and cerebrovascular resistance index (CVRi) (MAP→TPR and MAP→CVRi), as well as stroke volume (SV) to TPR in nine healthy subjects in supine and 45° head-up tilt positions. The gain of the SBP→HR transfer function was reduced with tilt in both the low- (0.03–0.15 Hz) and high-frequency (0.15–0.35 Hz) regions. In contrast, MAP→TPR transfer function gain was not affected by head-up tilt, but it did increase from low- to high-frequency regions. The phase relationships between MAP→TPR were unaffected by head-up tilt, but, consistent with an autoregulatory system, changes in MAP were followed by directionally similar changes in TPR, just as observed for the MAP→CVRi. The SV→TPR had high coherence with a constant phase of 150–160°. Together, these data that showed changes in MAP preceded changes in TPR, as well as a possible link between SV and TPR, are consistent with complex interactions between the vascular component of the arterial and cardiopulmonary baroreflexes and intrinsic properties such as the myogenic response of the resistance arteries.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献