Visualizing ocular lens fluid dynamics using MRI: manipulation of steady state water content and water fluxes

Author:

Vaghefi Ehsan12,Pontre Beau P.3,Jacobs Marc D.2,Donaldson Paul J.1

Affiliation:

1. Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand;

2. Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand

3. Centre for Advanced MRI, University of Auckland, Auckland, New Zealand; and

Abstract

Studies using various MRI techniques have shown that a water-protein concentration gradient exists in the ocular lens. Because this concentration is higher in the core relative to the lens periphery, a gradient in refractive index is established in the lens. To investigate how the water-protein concentration profile is maintained, bovine lenses were incubated in different solutions, and changes in water-protein concentration ratio monitored using proton density weighted (PD-weighted) imaging in the absence and presence of heavy water (D2O). Lenses incubated in artificial aqueous humor (AAH) maintained the steady state water-protein concentration gradient, but incubating lenses in high extracellular potassium (KCl-AAH) or low temperature (Low T-AAH) caused a collapse of the gradient due to a rise in water content in the core of the lens. To visualize water fluxes, lenses were incubated in D2O, which acts as a contrast agent. Incubation in KCl-AAH and low T-AAH dramatically slowed the movement of D2O into the core but did not affect the movement of D2O into the outer cortex. D2O seemed to preferentially enter the lens cortex at the anterior and posterior poles before moving circumferentially toward the equatorial regions. This directionality of D2O influx into the lens cortex was abolished by incubating lenses in high KCl-AAH or low T-AAH, and resulted in homogenous influx of D2O into the outer cortex. Taken together, our results show that the water-protein concentration ratio is actively maintained in the core of the lens and that water fluxes preferentially enter the lens at the poles.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3