Hydrogen sulfide and miR21 are suitable biomarkers of hypoxic exposure

Author:

Garcia Selina M.1ORCID,Matheson Benjamin1,Morales-Loredo Juan H.1,Jernigan Nikki L.1ORCID,Kanagy Nancy L.1ORCID,Resta Thomas C.1,Clark Ross M.2,Shekarriz Reza3,Gonzalez Bosc Laura V.1ORCID

Affiliation:

1. Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico

2. Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico

3. Exhalix, LLC., Albuquerque, New Mexico

Abstract

Hypoxia is the reduction of alveolar partial pressure of oxygen ([Formula: see text]). Military members and people who practice recreational activities from moderate to high altitudes are at risk for hypoxic exposure. Hypoxemia’s signs and symptoms vary from asymptomatic to severe responses, such as excessive hypoxic ventilatory responses and residual neurobehavioral impairment. Therefore, it is essential to identify hypoxia-induced biomarkers to indicate people with exposure to hypoxia. Advances have been made in understanding physiological responses to hypoxia, including elevations in circulating levels of endothelin 1 (ET-1) and microRNA 21 (miR-21) and reduction in circulating levels of hydrogen sulfide (H2S). Although the levels of these factors change upon exposure to hypoxia, it is unclear if these changes are sustained on return to normoxia. We hypothesize that hypoxia-induced ET-1 and miR-21 remain elevated, whereas hypoxia-reduction in H2S sustains after returning to normoxic conditions. To test this hypothesis, we exposed male rats to 6 h of 12% O2 and measured circulating levels of ET-1 and miR-21, pre, during, and posthypoxia. We found that ET-1 plasma levels increased in response to hypoxia but returned to normal levels within 30 min after the restoration of normoxia. miR-21 plasma levels and transdermal H2S emissions decreased in response to hypoxia, remaining decreased on return to normoxia, thus following the biomarker criteria. Therefore, this study supports a unique role for plasma miR21 and transdermal H2S as hypoxia biomarkers that could be used to identify individuals after exposure to hypoxia.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

National Science Foundation

DOD | USN | Office of Naval Research

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3