Author:
Leitner Claudia,Bartness Timothy J.
Abstract
The reversal of obesity is a difficult feat at best and is a growing problem as the obesity epidemic increases worldwide. Considerable focus has been made on the arcuate nucleus (Arc) in the control of body and lipid mass and food intake. To test the role of the Arc in body fat mobilization, we compared the effects of food deprivation on white adipose tissue (WAT) mass in adult Siberian hamsters by making exocytotic lesions of the Arc via neonatal subcutaneous injections of monosodium glutamate (MSG). MSG-treated hamsters had significantly increased body mass, total and individual WAT pad masses, and serum leptin concentrations compared with their vehicle-injected counterparts. MSG produced marked reductions in Arc Nissl staining, tyrosine hydroxylase-immunoreactive (ir) neurons, and neuropeptide Y (NPY)- and agouti-related protein (AgRP)-ir fibers compared with controls. MSG significantly decreased hypothalamic paraventricular nucleus (PVN) NPY- and AgRP fiber-ir compared with controls, likely because of Arc projections to this nucleus. MSG treatment also reduced area postrema (AP) tyrosine hydroxylase (TH)-ir fibers compared with controls. MSG treatment did not, however, block food deprivation-induced decreases in WAT pad mass compared with controls. Thus, despite considerable damage to the Arc and some of its projections to the PVN, as well as the AP, body fat was mobilized apparently normally, bringing into question the necessity of these structures for food deprivation-induced lipid mobilization. These data support recent evidence that chronically decerebrate rats, in which the forebrain is surgically isolated from the caudal brainstem, show normal food deprivation responses, including lipid mobilization.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献