Affiliation:
1. Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
Abstract
This study used acute, renal artery insulin infusion in conscious rats to test the hypothesis that hyperinsulinemia attenuates glucose-induced natriuresis by a direct renal mechanism. We reported previously that hyperinsulinemia was required to prevent ad libitum eating or an acute glucose bolus from causing excessive renal sodium loss. Rats were instrumented with renal artery, aortic, and femoral vein catheters and Data Sciences International blood pressure telemeters and were housed in metabolic cages. Insulin was clamped chronically at normal levels in two groups [vehicle infused (irV) and insulin infused (irI)] by administering streptozotocin and then infusing insulin intravenously 24 h/day to maintain normal blood glucose. Bolus glucose administration was used as a meal substitute to produce hyperglycemia that was not different between groups, and urinary sodium excretion (UNaV) was measured over the next 4 h. In the irV and control (C) rats, vehicle was infused in the renal artery during that period, whereas insulin was infused in the renal artery of the irI rats. Plasma insulin increased significantly in C rats but not in either of the clamped groups. UNaV in the irV rats, which could not increase circulating insulin levels, was approximately threefold greater than in C rats, similar to our previous report. However, allowing the kidney of irI rats to experience hyperinsulinemia via the renal artery insulin infusion completely prevented this, with no blood pressure differences. These data support our hypothesis that meal-induced increases in plasma insulin are a major component of normal sodium homeostasis, and that this occurs by direct action of insulin on the kidney.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献