Amiloride-sensitive sodium absorption is different in vertebrates and invertebrates

Author:

Sobczak Katja,Willing Anne,Kusche Kristina,Bangel Nadine,Weber Wolf-Michael

Abstract

Amiloride-sensitive Na+absorption is a well-described feature of numerous transporting epithelia in vertebrates. Yet, very little is known about this important physiological process regarding invertebrates. In the present paper, we compare vertebrate Na+absorption mediated by the amiloride-sensitive epithelial Na+channel (ENaC) and its invertebrate counterpart. We used the dorsal skin of the annelid Hirudo medicinalis as a model for the Na+absorption of invertebrate epithelia. In applying electrophysiological, molecular, and biochemical techniques we found striking functional and structural differences between vertebrate and invertebrate amiloride-sensitive Na+absorption. Using modified Ussing chambers, we analyzed the influence of different known blockers and effectors of vertebrate ENaC on leech epithelial Na+absorption. We demonstrate that the serine protease trypsin had no effect on the Na+transport across leech integument, while it strongly activates vertebrate ENaC. While protons, and the divalent cations Ni2+and Zn2+stimulate vertebrate ENaC, amiloride-sensitive Na+currents in leech integument were substantially reduced. For molecular studies, we constructed a cDNA library of Hirudo medicinalis and screened it with specific ENaC antibodies. We performed numerous PCR approaches using a vast number of different degenerated and specific ENaC primers to identify ENaC-like structures. Yet, both strategies did not reveal any ENaC-like sequence in leech integument. From these data we conclude that amiloride-sensitive Na+absorption in leech skin is not mediated by an ENaC-like Na+channel but by a still unknown invertebrate member of the ENaC/DEG family that we termed lENaTP (leech epithelial Na+transporting protein).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3