Author:
Tresguerres Martin,Parks Scott K.,Sabatini Sebastian E.,Goss Greg G.,Luquet Carlos M.
Abstract
Posterior isolated gills of Neohelice ( Chasmagnathus) granulatus were symmetrically perfused with hemolymph-like saline of varying [HCO3−] and pH. Elevating [HCO3−] in the saline from 2.5 to 12.5 mmol/l (pH 7.75 in both cases) induced a significant increase in the transepithelial potential difference ( Vte), a measure of ion transport. The elevation in [HCO3−] also induced a switch from acid secretion (−43.7 ± 22.5 μequiv·kg−1·h−1) in controls to base secretion (84.7 ± 14.4 μequiv·kg−1·h−1). The HCO3−-induced Vteincrease was inhibited by basolateral acetazolamide (200 μmol/l), amiloride (1 mmol/l), and ouabain (5 mmol/l) but not by bafilomycin (100 nmol/l). The Vteresponse to HCO3−did not take place in Cl−-free conditions; however, it was unaffected by apical SITS (2 mmol/l) or DIDS (1 mmol/l). A decrease in pH from 7.75 to 7.45 pH units in the perfusate also induced a significant increase in Vte, which was matched by a net increase in acid secretion of 67.8 ± 18.4 μequiv kg−1h−1. This stimulation was sensitive to basolateral acetazolamide, bafilomycin, DIDS, and Na+-free conditions, but it still took place in Cl−-free saline. Therefore, the cellular response to low pH is different from the HCO3−-stimulated response. We also report V-H+-ATPase- and Na+-K+-ATPase-like immunoreactivity in gill sections for the first time in this crab. Our results suggest that carbonic anhydrase (CA), basolateral Na+/H+exchangers and Na+-K+-ATPase and apical anion exchangers participate in the HCO3−-stimulated response, while CA, apical V-H+-ATPase and basolateral HCO3−-dependent cotransporters mediate the response to low pH.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献