Affiliation:
1. Department of Biology, Aarhus University, Aarhus C, Denmark
2. School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
3. Department of Biological Sciences, University of North Texas, Denton, Texas
Abstract
In the developing embryos of egg-laying vertebrates, O2 flux takes place across a fixed surface area of the eggshell and the chorioallantoic membrane. In the case of crocodilians, the developing embryo may experience a decrease in O2 flux when the nest becomes hypoxic, which may cause compensatory adjustments in blood O2 transport. However, whether the switch from embryonic to adult hemoglobin isoforms (isoHbs) plays some role in these adjustments is unknown. Here, we provide a detailed characterization of the developmental switch of isoHb synthesis in the American alligator, Alligator mississippiensis. We examined the in vitro functional properties and subunit composition of purified alligator isoHbs expressed during embryonic developmental stages in normoxia and hypoxia (10% O2). We found distinct patterns of isoHb expression in alligator embryos at different stages of development, but these patterns were not affected by hypoxia. Specifically, alligator embryos expressed two main isoHbs: HbI, prevalent at early developmental stages, with a high O2 affinity and high ATP sensitivity, and HbII, prevalent at later stages and identical to the adult protein, with a low O2 affinity and high CO2 sensitivity. These results indicate that whole blood O2 affinity is mainly regulated by ATP in the early embryo and by CO2 and bicarbonate from the late embryo until adult life, but the developmental regulation of isoHb expression is not affected by hypoxia exposure.
Funder
HHS | NIH | National Heart, Lung, and Blood Institute
National Science Foundation
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献