Proton-facilitated ammonia excretion by ionocytes of medaka (Oryzias latipes) acclimated to seawater

Author:

Liu Sian-Tai1,Tsung Lin1,Horng Jiun-Lin2,Lin Li-Yih1

Affiliation:

1. Department of Life Science, National Taiwan Normal University, Taipei, Taiwan; and

2. Department of Anatomy, Taipei Medical University, Taipei, Taiwan

Abstract

The proton-facilitated ammonia excretion is critical for a fish's ability to excrete ammonia in freshwater. However, it remains unclear whether that mechanism is also critical for ammonia excretion in seawater (SW). Using a scanning ion-selective electrode technique (SIET) to measure H+ gradients, an acidic boundary layer was detected at the yolk-sac surface of SW-acclimated medaka ( Oryzias latipes) larvae. The H+ gradient detected at the surface of ionocytes was higher than that of keratinocytes in the yolk sac. Treatment with Tricine buffer or EIPA (a NHE inhibitor) reduced the H+ gradient and ammonia excretion of larvae. In situ hybridization and immunochemistry showed that slc9a2 (NHE2) and slc9a3 (NHE3) were expressed in the same SW-type ionocytes. A real-time PCR analysis showed that transfer to SW downregulated branchial mRNA expressions of slc9a3 and Rhesus glycoproteins ( rhcg1, rhcg2, and rhbg) but upregulated that of slc9a2. However, slc9a3, rhcg1, rhcg2, and rhbg expressions were induced by high ammonia in SW. This study suggests that SW-type ionocytes play a role in acid and ammonia excretion and that the Na+/H+ exchanger and Rh glycoproteins are involved in the proton-facilitated ammonia excretion mechanism.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3