Carotid sinus nerve stimulation, but not intermittent hypoxia, induces respiratory LTF in adult rats exposed to neonatal intermittent hypoxia

Author:

Julien Cécile A.1,Niane Lalah1,Kinkead Richard1,Bairam Aida1,Joseph Vincent1

Affiliation:

1. Department of Pediatrics, Laval University, Centre de Recherche St.-François d'Assise, Québec, Canada

Abstract

We tested the hypothesis that exposure to neonatal intermittent hypoxia (n-IH) in rat pups alters central integrative processes following acute and intermittent peripheral chemoreceptor activation in adults. Newborn male rats were exposed to n-IH or normoxia for 10 consecutive days after birth. We then used both awake and anesthetized 3- to 4-mo-old rats to record ventilation, blood pressure, and phrenic and splanchnic nerve activities to assess responses to peripheral chemoreflex activation (acute hypoxic response) and long-term facilitation (LTF, long-term response after intermittent hypoxia). In anesthetized rats, phrenic and splanchnic nerve activities and hypoxic responses were also recorded with or without intact carotid body afferent signal (bilateral chemodenervation) or in response to electrical stimulations of the carotid sinus nerve. In awake rats, n-IH alters the respiratory pattern (higher frequency and lower tidal volume) and increased arterial blood pressure in normoxia, but the ventilatory response to repeated hypoxic cycles was not altered. In anesthetized rats, phrenic nerve responses to repeated hypoxic cycles or carotid sinus nerve stimulation were not altered by n-IH; however, the splanchnic nerve response was suppressed by n-IH compared with control. In control rats, respiratory LTF was apparent in anesthetized but not in awake animals. In n-IH rats, respiratory LTF was not apparent in awake and anesthetized animals. Following intermittent electrical stimulation, however, phrenic LTF was clearly present in n-IH rats, being similar in magnitude to controls. We conclude that, in adult n-IH rats: 1) arterial blood pressure is elevated, 2) peripheral chemoreceptor responses to hypoxia and its central integration are not altered, but splanchnic nerve response is suppressed, 3) LTF is suppressed, and 4) the mechanisms involved in the generation of LTF are still present but are masked most probably as the result of an augmented inhibitory response to hypoxia in the central nervous system.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3