Acute impact of changes to hemodynamic load on the left ventricular strain-volume relationship in young and older men

Author:

Hulshof Hugo G.1ORCID,van Dijk Arie P.1,Hopman Maria T. E.1,van der Sluijs Chris F.1,George Keith P.2,Oxborough David L.2,Thijssen Dick H. J.12

Affiliation:

1. Radboud Institute for Health Sciences, Departments of Physiology and Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands

2. Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom

Abstract

Chronic changes in left ventricular (LV) hemodynamics, such as those induced by increased afterload (i.e., hypertension), mediate changes in LV function. This study examined the proof of concept that 1) the LV longitudinal strain (ε)-volume loop is sensitive to detecting an acute increase in afterload, and 2) these effects differ between healthy young versus older men. Thirty-five healthy male volunteers were recruited, including 19 young (24 ± 2 yr) and 16 older participants (67 ± 5 yr). Tests were performed before, during, and after 10-min recovery from acute manipulation of afterload. Real-time hemodynamic data were obtained and LV longitudinal ε-volume loops were calculated from four-chamber images using two-dimensional echocardiography. Inflation of the anti-gravity (anti-G) suit resulted in an immediate increase in heart rate, blood pressure, and systemic vascular resistance and a decrease in stroke volume (all P < 0.05). This was accompanied by a decrease in LV peak ε, slower slope of the ε-volume relationship during early diastole, and an increase in uncoupling (i.e., compared with systole; little change in ε per volume decline during early diastole and large changes in ε per volume decline during late diastole) (all P < 0.05). All values returned to baseline levels after recovery (all P > 0.05). Manipulation of cardiac hemodynamics caused comparable effects in young versus older men (all P > 0.05). Acute increases in afterload immediately change the diastolic phase of the LV longitudinal ε-volume loop in young and older men. This supports the potency of the LV longitudinal ε-volume loop to provide novel insights into dynamic cardiac function in humans in vivo.

Funder

NA

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3