Effect of central CO2 drive on lung inflation responses of expiratory bulbospinal neurons in dogs

Author:

Tonkovic-Capin Mislav1,Zuperku Edward J.1,Stuth Eckehard A.1,Bajic Jurica1,Dogas Zoran1,Hopp Francis A.1

Affiliation:

1. Zablocki Department of Veterans Affairs Medical Center and the Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53295

Abstract

The purpose of these studies is to better understand the nature of the reflex interactions that control the discharge patterns of caudal medullary, expiratory (E) bulbospinal neurons. We examined the effect of central chemodrive inputs measured as arterial CO2 tension (PaCO2 ) during hyperoxia on the excitatory and inhibitory components of the lung inflation responses of these neurons in thiopental sodium-anesthetized, paralyzed dogs. Data from slow ramp inflation and deflation test patterns, which were separated by several control inflation cycles, were used to produce plots of neuronal discharge frequency ( F n) versus transpulmonary pressure (Pt). Pt was used as an index of the activity arising from the slowly adapting pulmonary stretch receptors (PSRs). Changes in inspired CO2 concentrations were used to produce PaCO2 levels that ranged from 20 to 80 mmHg. The data obtained from 41 E neurons were used to derive an empirical model that quantifies the average relationship for F n versus both Pt and PaCO2 . This model can be used to predict the time course and magnitude of E neuronal responses to these inputs. These data suggest that the interaction between PaCO2 and PSR-mediated excitation and inhibition of F n is mainly additive, but synergism between PaCO2 and excitatory inputs is also present. The implications of these findings are discussed.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3