Affiliation:
1. Department of Kinesiology, University of Colorado at Boulder, Boulder, Colorado 80302; and
2. Exercise and Sport Research Institute, Arizona State University, Tempe, Arizona 85287-0404
3. Department of Pediatrics, University of Colorado Health Sciences Center, Denver 80262,
Abstract
The purpose of the present study was to determine whether fructose is the nutrient mediator of sucrose-induced insulin resistance and glucose intolerance. Toward this end, male rats were fed a purified starch diet (68% of total calories) for a 2-wk baseline period. After this, rats either remained on the starch (ST) diet or were switched to a sucrose (SU, 68% of total calories), fructose/glucose (F/G, 34/34% of total calories), or fructose/starch (F/ST, 34/34% of total calories) diet for 5 wk. Rats then underwent either an intravenous glucose tolerance test ( n = 10/diet) or a euglycemic, hyperinsulinemic clamp ( n = 8 or 9/diet). Incremental glucose and insulin areas under the curve in SU, F/G, and F/ST were on average 61 and 29% greater than ST, respectively, but not significantly different from one another. During clamps, glucose infusion rates (mg · kg−1 · min−1) required to maintain euglycemia were significantly lower ( P< 0.05) in SU, F/G, and F/ST (13.4 ± 0.9, 9.5 ± 1.7, 11.3 ± 1.3, respectively) compared with ST (22.8 ± 1.1). Insulin suppression of glucose appearance (mg · kg−1 · min−1) was significantly lower ( P < 0.05) in SU, F/G, and F/ST (5.6 ± 0.5, 2.2 ± 1.2, and 6.6 ± 0.7, respectively) compared with ST (9.6 ± 0.4). Insulin-stimulated glucose disappearance (mg · kg−1 · min−1) was significantly lower ( P < 0.05) in SU, F/G, and F/ST (17.9 ± 0.6, 16.2 ± 1.3, 15.3 ± 1.8, respectively) compared with ST (24.7 ± 1.2). These data suggest that fructose is the primary nutrient mediator of sucrose-induced insulin resistance and glucose intolerance.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献