Affiliation:
1. Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507; and
2. Department of Ophthalmology, Nagoya City University Medical School, Nagoya 467-0001, Japan
Abstract
Diabetes is associated with increased neural damage after transient cerebral ischemia. Recently, leukocytes, which are thought to play a central role in ischemia-reperfusion injury, have been suggested to be involved in exacerbated damage after transient ischemia in diabetic animals. The present study was designed to clarify whether the anticipated worse outcome after transient cerebral ischemia in diabetic animals was due to augmented leukocyte-mediated neural injury. Using rats with streptozotocin-induced diabetes of 4-wk duration, we investigated leukocyte-endothelial cell interactions during reperfusion after a transient 60-min period of retinal ischemia. Unexpectedly, postischemic diabetic retina showed no active leukocyte-endothelial cell interactions during reperfusion. The maximal numbers of rolling and accumulating leukocytes in diabetic retina were reduced by 73.6 and 41.2%, respectively, compared with those in nondiabetic rats. In addition, neither preischemic insulin treatment of diabetic rats nor preischemic glucose infusion of nondiabetic rats significantly influenced leukocyte-endothelial cell interactions during reperfusion. The present study demonstrated that high blood glucose concentration before induction of ischemia did not exacerbate leukocyte involvement in the postischemic retinal injury. Furthermore, diabetic retina showed suppressed leukocyte-endothelial cells interactions after transient ischemia, perhaps due to an adaptive mechanism that developed during the period of induced diabetes.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献