Circadian rhythm changes in core temperature over the menstrual cycle: method for noninvasive monitoring

Author:

Coyne Mary D.1,Kesick Christina M.2,Doherty Tammy J.3,Kolka Margaret A.2,Stephenson Lou A.2

Affiliation:

1. Department of Biological Sciences, Wellesley College, Wellesley 02481-8203;

2. Thermal and Mountain Medicine Division, and

3. Biophysics and Biomedical Modeling Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760-5007

Abstract

The purpose of this study was to determine whether core temperature (Tc) telemetry could be used in ambulatory women to track changes in the circadian Tc rhythm during different phases of the menstrual cycle and, more specifically, to detect impending ovulation. Tcwas measured in four women who ingested a series of disposable temperature sensors. Data were collected each minute for 2–7 days and analyzed in 36-h segments by automated cosinor analysis to determine the mesor (mean temperature), amplitude, period, acrophase (time of peak temperature), and predicted circadian minimum core temperature (Tc-min) for each cycle. The Tcmesor was higher ( P ≤ 0.001) in the luteal (L) phase (37.39 ±0.13°C) and lower in the preovulatory (P) phase (36.91 ±0.11°C) compared with the follicular (F) phase (37.08 ±0.13°C). The predicted Tc-min was also greater in L (37.06 ± 0.14°C) than in menses (M; 36.69 ± 0.13°C), F (36.6 ± 0.16°C), and P (36.38 ± 0.08°C) ( P ≤ 0.0001). During P, the predicted Tc-min was significantly decreased compared with M and F ( P ≤ 0.0001). The amplitude of the Tc rhythm was significantly reduced in L compared with all other phases ( P ≤ 0.005). Neither the period nor acrophase was affected by menstrual cycle phase in ambulatory subjects. The use of an ingestible temperature sensor in conjunction with fast and accurate cosinor analysis provides a noninvasive method to mark menstrual phases, including the critical preovulatory period.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3