Sibutramine alters the central mechanisms regulating the defended body weight in diet-induced obese rats

Author:

Levin Barry E.1,Dunn-Meynell Ambrose A.1

Affiliation:

1. Neurology Service, Department of Veterans Affairs New Jersey Health Care System, East Orange 07018; and the Department of Neurosciences, New Jersey Medical School, Newark, New Jersey 07103

Abstract

Chronic administration of sibutramine lowers body weight, presumably by altering brain monoamine metabolism. Here the effect of sibutramine on sympathoadrenal function (24-h urine norepinephrine and epinephrine levels) and arcuate nucleus (ARC) neuropeptide Y (NPY) and proopiomelanocortin (POMC) expression was assessed in diet-induced obese rats fed a low-fat diet. Chronic (10 wk) sibutramine [5 mg · kg−1 · day−1 ip; rats fed ad libitum and injected with sibutramine (AS)] lowered body weight by 15% but only transiently (3–4 wk) reduced intake compared with vehicle-treated controls [rats fed chow ad libitum and injected with vehicle daily (AV)]. Other rats food restricted (RS) to 90% of the weight of AS rats and then given sibutramine restored their body weights to the level of AS rats when allowed libitum food intake. After reequilibration, RS rats were again energy restricted to reduce their weight to 90% of AS rats, and additional vehicle-treated rats (RV) were restricted to keep their body weights at the level of AS rats for 3 wk more. Terminally, total adipose depot weights and leptin levels paralleled body weights (AV > AS = RV > RS), although AS rats had heavier abdominal and lighter peripheral depots than RV rats of comparable body weights. Sibutramine treatment increased sympathetic activity, attenuated the increased ARC NPY, and decreased POMC mRNA levels induced by energy restriction in RV rats. Thus sibutramine lowered the defended body weight in association with compensatory changes in those central pathways involved in energy homeostasis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 5-HT2C Receptor Stimulation in Obesity Treatment: Orthosteric Agonists vs. Allosteric Modulators;Nutrients;2023-03-17

2. Epilogue;Epigenetic Mechanisms of the Cambrian Explosion;2020

3. Cambrian explosion;Epigenetic Mechanisms of the Cambrian Explosion;2020

4. Control Systems and Determination of Phenotypic Traits in Metazoans;Epigenetic Principles of Evolution;2019

5. Variable proopiomelanocortin expression in tanycytes of the adult rat hypothalamus and pituitary stalk;Journal of Comparative Neurology;2016-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3