Impact of gender and endothelin on renal vasodilation and hyperfiltration induced by relaxin in conscious rats

Author:

Danielson Lee A.1,Kercher Laurie J.2,Conrad Kirk P.2

Affiliation:

1. Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; and

2. Departments of Obstetrics, Gynecology, and Reproductive Sciences, and of Cell Biology and Physiology, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213

Abstract

Chronic administration of the hormone relaxin elicits renal vasodilation that is dependent on nitric oxide (NO) in both conscious intact and ovariectomized female rats. Our first objective was to test whether the hormone, when administered to approximate serum concentrations found in midterm pregnant rats, induces renal vasodilation in males. Glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) increased significantly, on average, by 33 and 49% over baseline, respectively, after 5 days of recombinant human relaxin (rhRLX) administration to 12 conscious male rats by subcutaneous osmotic minipump. There were also significant decreases in hematocrit, plasma osmolality, and sodium concentration. Another objective was to determine whether endogenous endothelin (ET; via the endothelial ETB receptor) mediates the NO-dependent renal vasodilation produced by relaxin. rhRLX or vehicle was administered to conscious female rats ( n = 9 and 8 rats, respectively). On the fifth day, baseline GFR and ERPF were both increased, on average, by 20–30% in the rats administered rhRLX ( P < 0.05 vs. vehicle). Next, the specific ETB-receptor antagonist RES-701-1 was infused intravenously over 4 h in both groups of rats. In response to RES-701-1, there was a significant decline in both GFR and ERPF in the rats receiving rhRLX such that renal function converged in the two groups of animals. We conclude 1) relaxin induces marked changes in the renal circulation and in osmoregulation regardless of gender and 2) relaxin-induced renal vasodilation and hyperfiltration are mediated by endothelin through the endothelial ETB receptor subtype and NO.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3