Affiliation:
1. Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain
Abstract
The effects of insulin and IGF-I on fatty acid (FA) and glucose metabolism were examined using oleic acid or glucose as tracers in differentiated rainbow trout ( Oncorhynchus mykiss ) myotubes. Insulin and IGF-I significantly reduced the production of CO2from oleic acid with respect to the control values. IGF-I also significantly reduced the production of acid-soluble products (ASP) and the concentration of FA in the medium, while cellular triacylglycerols (TAG) tended to increase. Only insulin produced a significant accumulation of glycogen inside the cells in glucose distribution experiments. Incubation with catecholamines did not affect oleic acid metabolism. Cells treated with rapamycin [a target of rapamycin (TOR) inhibitor] significantly increased the oxidation of oleic acid to CO2and ASP, while the accumulation of TAG diminished. Rosiglitazone (a peroxisome proliferator-activated receptor γ agonist) and etomoxir (a CPT-1 inhibitor) produced a severe and significant reduction in the production of CO2and ASP. Rosiglitazone and etomoxir also produced a significant accumulation of FA outside and inside the cells, respectively. No significant effects of these drugs on glucose distribution were observed. These data indicate that insulin and IGF-I act as anabolic hormones in trout myotubes in both oleic acid and glucose metabolism, although glucose oxidation appears to be less sensitive than FA oxidation to insulin and IGF-I. The use of rapamycin, etomoxir, and rosiglitazone may help us to understand the mechanisms of regulation of lipid metabolism in fish.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献